001
01.03.2004, 22:11 Uhr
Hans
Library Walker (Operator)
|
naja im Prinzip ganz einfach, nämlich so, wie man es mit Papier und Bleistift auch ermitteln würde... Nein, Spass bei Seite. Zuerst einmal eine Bemerkung vorweg: Das wird sehr viel werden, wenn der String länger als 4 Zeichen wird. Begründung siehe unten. Ansonsten würde ich hingehen, und erst einmal die ersten beiden Zeichen miteinander vertauschen. Dann die nächsten beiden miteinander vertauschen. Das Prinzip mit dem austaschen stelle ich mir so ähnlich vor, wie beim zählen mit binären Zahlen. Da wiederholen sich betimmte Kombinationen ja auch systematisch. Dabei aber immer aufpassen, welches Zeichen gerade wo steht. Das kann man sich in einem weiteren Feld merken.
So, jetzt noch mal zur Anzahl: Wenn Du alle möglichen Kombinationen haben willst, dann ist das im Sinne der Wahrscheinlichkeitsrechnung die Anzahl der möglichen Permutationen p, und die berechnet sich so: p = n! wobei n die Anzahl der Zeichen in deinem String ist. Das Ausrufzeichen steht für Faklutät; n! = 1 * 2 * 3 * ... * (n-1) * n (ganz allgemeine Formel) Beispiele: Für n=3 gilt n! = 1 * 2 * 3 = 6 Für n=4 gilt n! = 1 * 2 * 3 * 4 = 24 Für n=5 gilt n! = 1 * 2 * 3 * 4 * 5 = 120 Für n=6 gilt n! = 1 * 2 * 3 * 4 * 5 * 6 = 720 Für n=7 gilt n! = 1 * 2 * 3 * 4 * 5 * 6 * 7 = 5040 Für n=8 gilt n! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 = 40320 Für n=9 gilt n! = 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 = 362880
Wie Du siehst, wird das sehr schnell sehr viel, was Dich aber keinesfalls davon abhalten soll, Dich nicht doch an einem solchen Programm zu versuchen. Nur ob es Sinnvoll ist, das alles auf die Mattscheibe auszugeben, wage ich zu bezweifeln. Ich würde es in eine Datei schreiben - das geht nämlich schneller, und die kann man sich später in Ruhe ansehen. Wenn das auf dem Bildschirm alles "vorbei rauscht" hat man da ja auch nichts von.
Hans -- Man muss nicht alles wissen, aber man sollte wissen, wo es steht. Zum Beispiel hier: Nachdenkseiten oder Infoportal Globalisierung. |