000
08.09.2013, 10:19 Uhr
banshee
|
Hallo,
nur eine kurze Verständnisfrage zu folgendem Buchabschnitt:
Es ging um die binäre Fließkommaarithmetik nach IEEE 754, also 1 Bit Vorzeichen, 8 Bit Exponent, 23 Bit Mantisse
Zitat: |
Die Genauigkeit einer 32-Bit-Fließokmmazahl hängt von der Granularität des Least Significant Bits (LSB) der Mantisse für einen gegebenen Exponenten ab. Sehr nah bei der 1 liegt die Granularirät einer 32-Bit-Fließkommazahl bei 2^-24. Bei Werten um 1000 ist sie schon 2^-13 und bei Werten um 100000 liegt sie bei 2^-7.
|
Ich verstehe nicht, was hier genau gemeint ist. Das LSB der Mantisse ist doch dann Bit Nr. 23?! Es klingt nämlich so, als ob sich die Granularität in Abhängigkeit der Größenordnung der darzustellenden Zahl ändert. Wie kann das aber sein? Das LSB einer Zahlendarstellung hat doch eine fixe Wertigkeit und müsste daher immer gleich groß sein?! Des weiteren ist die Mantisse doch auch immer auf 1,x normalisiert. Wodurch kommen diese Genauigkeitssprünge nun zustande? |